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OVERVIEW OF DIGITAL SIGNAL PROCESSING THEORY

1. INTRODUCTION
1.1 Signal Processing

Electricity, or the flow of electrons, has enabled man to satisfy some of his most
important needs. Among these are the storage, processing, and transmission of a practi-
cal and useful form of energy and the storage, processing, and transmission of informa-
tion. This latter application of electron flow comes under the more specific description
electronics, and includes voice communications, data communications, and various types
of control systems, timing systems, and detection systems used in radar, sonar, and
seismological technology.

This handling and manipulation of information is accomplished by a direct corre-
spondence between the natural variation in the information and some characteristic of
the flow of electrical energy. The characteristics of the electrical energy available for
this purpose include amplitude, frequency, and relative time delay or phase. The overall
electrical waveform, or signal used for information handling, normally consists of a com-
ponent due directly to information content as well as a component due to undesired ef-
fects described generally as noise. In the manipulation of information in the form of
electrical waveforms, it is often necessary to change one waveform into another more
desirable waveform. It may be desired to modify a waveform component or characteris-
tic, separate two or more previously combined waveforms, or even eliminate a waveform
component entirely. Such modifications of waveforms or signals, come under the general
classification of signal-processing techniques which are implemented by means of signal-
processing systems. The most significant areas of signal processing include filters, which
are used for waveform shaping as well as spectral and correlation measurement.

The signals to be considered by a signal-processing system are classified as either
one dimensional or multidimensional depending on the number of independent variables.
Electrical signals are generally one-dimensional functions of time; a picture, for example,
with its spatial variables, represents a two-dimensional signal. In this report, only one-
dimensional signal processing will be discussed except where otherwise noted. For ease
of discussion, it will be assumed here that the independent variable is time, although other
interpretations such as distance would serve equally well.

Note: This report represents a part of the research performed under the Edison Memoria!l Fellowship in
partial fulfillment of the requirements for the degree of Doctor of Science at the George Washing-
ton University School of Engineering and Applied Science.

Manuscript submitted February 7, 1975.
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1.2 Continuous Systems

Signals are usually generated at their source and used at their final destination in a
form in which the dependent variable, signal amplitude, can take on a continuous range
of values as a continuous function of time. The class of such signals are referred to as
analog or continuous signals, with the latter being a more desirable term. Examples of
such signals are those generated and received in normal AM and FM radio systems.
Mathematically, sin wt¢ would be such a signal. The class of systems in which these
continuous or analog signals are used are known as continuous or analog systems. The
general analysis of such systems is covered in Refs. 1, 2, and 3, and the synthesis of
these systems is covered in Ref. 4. As opposed to strictly continuous signals there are
signals in which only the independent variable, time, assumes a continuum of values;
these are referred to as continuous-time signals.

1.3 Discrete Systems

Discrete-time signals are defined over a continuous range of amplitude values but
only for discrete values of the independent variable, time. These discrete-time or
sampled-data signals are used in sampled-data systems as described in Ref. 5. When the
signal amplitude, or dependent variable, is restricted to a discrete set of values defined
only at a discrete set of values of the independent variable, the signal is referred to as a
digital signal. Thus systems that handle signals which are represented as a sequence of
discrete values are digital systems. Such digital systems designed for accomplishing
waveform manipulation by spectrum modifications are defined as digital filters. A
digital signal could be produced for presentation at an input to a digital system by
means of an analog-to-digital converter which produces discrete samples of a continuous
time signal. In a digital signal the noise component, mentioned earlier, can be repre-
sented as a sequence of undesirable discrete values. This noise sequence would generally
be a sequence of random values. It is the manipulation of digital signals by digital sys-
tems which is classified under the description of digital signal processing which will be
reviewed in this report. The definitions and terminology used in this report are generally
consistent with that recommended by the IEEE Group on Audio and Electroacoustics
[6]. Many definitions are presented here for the benefit of those not previously versed
in the relatively new field of digital signal processing. For others, this will serve for re-
view and consistency of terminology.

The components which are interconnected to form continuous system networks are
resistors, inductors, and capacitors. The parameter values of these resistance-inductance-
capacitance (RLC) devices determine the signal-processing characteristics of a continuous
system. Digital systems are composed of digital adders, multipliers, and unit delays or
delay registers. In binary digital circuitry, these components are formed by networks of
nonlinear logic gates and flipflop bit-storage devices. The interconnection or block dia-
grams of these components determine the characteristics of the digital system.

1.4 Digital Signal Processing

A digital system used for signal processing can in general be implemented in either
of two ways. The first is a machine-, assembly-, or higher-level-language computer

2
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program which is used in a general-purpose computer to implement the algorithmic pro-
cedure indicated by the block diagram. This is a true mathematical representation of the
digital system and should not be referred to as a simulation. In the other approach a
special-purpose computing system, interconnecting the digital devices as indicated in the
block diagram, can be physically implemented. The increasing speed and decreasing
size and cost of digital integrated-circuit hardware elements along with their extremely
high reliability, maintainability, and repeatability of performance have resulted within
the past dozen years in an increasing desire to perform more and more signal-processing
tasks by digital rather than analog means. That an isomorphism between digital and
analog signal processing exists in a large class of practical problems, and thus that the
trend toward digital signal processing is justified, has been shown by Steiglitz [7]. Digi-
tal systems suffer less than continuous systems from parameter-value repeatability in-
accuracies and performance sensitivity to environment. A major problem area however
that must continually be considered in the design and application of digital systems is
the inherent quantization effects due to the necessarily finite representation of all
parameters in a system.

Since most signals to be processed occur naturally in a continuous form, the input
to a digital signal processing system is usually preceded by an analog-to-digital converter
that, under the control of a trigger signal, generates digital samples of the continuous
signal. These digital samples are processed within the digital signal processing system
according to the required algorithms and presented at its output. With the exception
of cases in which the results can be accepted in digital form, such as for presentation to
other digital systems or output devices, the output must be presented to a digital-to-
analog converter that provides the final output in the form of a continuous signal. These
converters, which operate between continuous and discrete signal representations, generate
further inaccuracies due to finite operating speeds as well as finite quantization. The
theory and implementation of analog/digital conversions has been covered extensively by
Schmid in Ref. 8.

The basic linear algorithms used in digital signal processing are the digital filter
and the discrete Fourier transform (DFT). A digital filter is usually accomplished by
recursion described by linear difference equations, although other realizations use discrete
convolution and DFT techniques. The DFT is almost always applied in the form of one
of an extremely efficient set of algorithms collectively referred to as fast-Fourier-
transform or FFT techniques. Such techniques, which were first disclosed by Cooley
and Tukey [9] in 1965 reduce the computation time by a large factor so as to make
previously inefficient, long DFT procedures practical. This development has had the
most significant effect on digital signal processing. The DFT in the form of the FFT is
used for frequency spectral processing and measurement, correlation measurement, system
realization by high-speed convolution, and the realization of digital filters.

1.5 Objectives

This report will review the theory and techniques by which signal-processing pro-
cedures, both those previously accomplished by continuous systems as well as those
previously impractical, can be accomplished by digital means. The major areas of digital
signal processing will be explored.
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This discussion will begin with the theory of discrete systems, with emphasis on
discrete signals, the z transform, discrete-time linear shift-invariant systems, discrete con-
volution, system functions, causality, and stability. The relationships between discrete
and continuous system theory will be presented with respect to the Laplace transform
in the continuous case and the z transform in the discrete case, with consideration of
mappings between the s and z planes. The Fourier transforms in the continuous and
discrete cases will be considered as well as the sampling of continuous signals for digital
processing and the reconstruction of continuous signals from discrete representations.
The methods of realization of digital signal processing systems will be presented along
with a description of digital network elements, signal flow graphs, and various forms of
digital networks as derived from the system function in the form of a ratio of poly-
nomials in z~1. The theory of digital filtering will be discussed with relation to continu-
ous filter theory in terms of such characteristics as the bandwidth, ripple, and the
magnitude-squared function. The design of digital filters, to satisfy frequency-domain
characteristics, by various techniques such as using transformations to translate proven con-
tinuous filter designs into digital filters will be considered. Digital filter design techniques
in the time-domain are also discussed. The theory of the DFT and its implementation
problems will be presented prior to a description of the theory and realization of the
FFT. Particularly powerful applications of the FFT such as high-speed convolution and
correlation will be discussed along with a description of the techniques required to cor-
rectly use the FFT algorithm. Finally the quantization effects inherent in all phases of
digital signal processing will be reviewed with respect to their influence on the outputs
from digital filters and FFT applications.

2. DISCRETE SIGNALS AND SYSTEMS
2.1 Representation of Discrete Signals

To be able to represent and analyze digital systems and gain further insight into
their operation, a host of definitions and techniques have been developed. These defini-
tions and techniques have counterparts in continuous system theory. A signal can be
represented in continuous system theory as a function of time x(t), where the domain
of t can be -0 < t < oo or any subset of that interval. In a discrete time system, a
signal is represented as a sequence of values x(nT) where n is an integer and, in general,
—oo < n < +oo, Thus the function is defined only at discrete time intervals of length
T. The discrete signal can be thought of as the result of sampling x(¢) at uniform inter-
vals of duration T. This sampling process will be discussed later. For the purpose of
representing a discrete signal as a sequence of values, it can be assumed that T is equal to
unity without effecting the validity of the theory to follow. Thus a discrete signal can
be represented as the sequence x(n), where —o0 < n < oo, and for the purpose of dis-
cussion the nth value of the sequence can be thought of as the nth sample.

The unit impulse function, and the response of continuous systems to such an in-
put, play an important role in the representation and analysis of signals and systems in
continuous system theory. An analogous situation exists in discrete system theory with a
discrete-time impulse or unit sample 5(n) input and the corresponding output or unit-
sample response. The unit sample has the value O for all values of n except n = 0, for
which 6(0) = 1. The sequence 8(n — ng) is O for all n except n = ng, for which it has a
value 1. The product of a constant x(ng) and the unit-sample function delayed by n,

4
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x(ny)8(n = ng), represents a sample of magnitude x(ng) at the nyth sample of a sequence.
Thus the unit sample can be used to represent a sequence x(n) as a weighted sum of unit
samples, that is,

oo

x(n) = ) x(k)S(n - k).

k=~

A comprehensive and general description of the discrete representation of signals
has been presented by Oppenheim and Johnson in Ref. 10. In that paper several alterna-
tives to periodically sampled representations are discussed along with the representation
of discrete sequences by other discrete sequences.

2.2 Linear Shift-Invariant Systems

An important class of discrete-time systems which are used to perform many signal
processing functions are linear shift-invariant systems. This class can be easily handled
mathematically and can be readily designed to particular specifications. The conditions
pertaining to these systems are described in Ref. 11. The transformation T[...] can be
used to represent the output y(n) of a system in response to an input x(n), where
y¥(n) = T[x(n)]. If a system has responses y;(n) and yo(n) corresponding to inputs
x;(n) and x4(n), then the system is linear only if

Tlax;(n) + bxy(n)] = aT[xy(n)] + bT[xy(n}] = ayi(n) + byy(n)

with a and b arbitrary constants. For the class of shift-invariant systems, if the response
y(n) corresponds to input x(n), then y(n - k) is the response corresponding to input
x(n - k), k being any integer. The class of systems possessing both the linearity and
shift-invariant restraints are linear shift-invariant systems. These systems are analogous
to linear time-invariant systems, which are the most used class of continuous systems,

as described in Refs. 1 through 4. Unless otherwise stated, all systems to be considered
here possess the linear shift-invariant properties.

A subclass of linear shift-invariant systems used in many signal-processing systems
and particularly in digital filtering are those described by linear constant-coefficient
difference equations. These difference equations can be used, as in Refs. 11 and 12, to
describe the behavior of linear shift-invariant discrete systems in the same manner that
linear constant-coefficient differential equations are used for the analysis of linear time-
invariant continuous systems. These difference equations are of the form

N M
D apyn-k) = ) b x(n-r),
k=0 r=0

where x(n) and y(n) are the system input and output sequences respectively. The nth
value of the output can therefore be expressed as
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N M br
y(n) = - Z (Z—k) y(n - k) + Z(E>x(n -r)

k=1 ‘0 r=0

and is thus a function of the nth input value and the M and N past values of the input
and output. If the unit-sample response is of finite duration the system is an FIR (finite
impulse response) system, whereas a system with a unit sample response of infinite dura-
tion is an IIR (infinite impulse response) system. For an FIR system N = 0 and y(n) is
a function only of the present and past M inputs. For an IIR system N must be greater
than zero.

2.3 The z Transform

The Laplace transform [13] permits the differential equations which describe the
operations of continuous systems to be transformed into algebraic equations which can
be more easily manipulated and solved. As a direct extension of this transform technique,
components of a continuous signal processing system can be represented for analysis di-
rectly in their s-plane or frequency-domain equivalents, thus permitting ease of analysis.
The z transform techniques, initially introduced by DeMoivre [14] via the concept of
the ‘“‘generating function” of probability theory, likewise permit algebraic manipulation
and frequency-domain representation for discrete systems and the linear difference
equations which describe their operation. The application of z transforms to sampled-
data systems is described by Ragazzini and Franklin [5], and a complete development of
the z transform and its properties is provided by Jury [15]. A discussion of the 2
transform requires application of some results from complex variable theory such as
provided in Ref. 16. The 2 transform X(z) of a discrete sequence x(n) is defined as

+ o

X(z) = Z x(n)z™",

n=-=o

which due to the extent of the summation index to all negative as well as positive inte-
gers is known as the two-sided z transform. The complex variable z-1 is termed the
unit delay operator and z is the unit advance operator. If, as in practical systems, the
sequence x(n) starts at n = 0 with x(n) = 0 for all n < 0, the z transform can then be
expressed in its one-sided form:

+oo

X(z) = Z x(n)zn.
n=0

In like fashion, one can describe a z transform for a finite-length sequence x(n) which is
nonzero from n; to ny and can describe z transforms for right-sided and left-sided se-
quences defined for summation indices ny < n < 400 and —o < n < ny respectively.
Just as the Laplace transform can be represented by its behavior in the complex s plane,
X(z) can be represented graphically in the complex z plane. The z transform operation
can be represented symbolically as X(z) = z[x(n)].
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To completely specify the z transform, it is necessary to express the defined series
along with a description of the region of convergence of X(z) in the z plane. The region
of convergence of a z transform X(z) is that set of values of the complex variable z for
which X(z) converges. In general this region will be the annular region R_ < [z| < R,,
where R_ can be as small as 0 and R, as large as oo,

The z transforms that occur in the analysis of linear shift-invariant systems can be
expressed as ratios of polynomials in z or z-1, as will be shown later. Those values of z
for which the numerator, and thus the z transform X(z), are O are the zeros of X(z).
Those values of z for which the denominator is 0, and thus X(z) is infinite, are known
as the poles of X(z). Additionally poles may occur at z = oo, There are several relation-
ships between the poles and zeros of a z transform and its region of convergence which
can be derived from arguments presented in Ref. 11. First the region of convergence
cannot contain any poles, and second the region of convergence must be bounded by
poles or by 0 and o°.

2.4 The Inverse z Transform

From the z transform X(z) the corresponding sequence x(n) can be found by means
of one of several methods defined in Ref. 15. This process is referred to as the inverse
z transform and can be denoted symbolically as x(n) = z1[X(z)]. In its most general
form the inverse transform can be expressed as a complex integral formula,

x(n) = 2—710 fX(z)z"'ldz,
C

where C is a counterclockwise closed contour in the region of convergence of X(z) and
enclosing the origin as well as all singularities of X(2). For rational z transforms,
Cauchy’s integral formula can be used to evaluate x(n) as

x(n) = —1 X(z)z""! dz = sum of the residues of X(z)z" 1.
2mj )

When X(z) can be expressed in a power series expansion (Taylor’s series) of X(z) as a
function of z-1, the value of x(n) will be the coefficient of the z=" term in the power
series

%0

X(z) = Z x(n)z™".

n=-w

In practical problems an X(z) given in closed form can be expressed in a power series

by the use of an existing expansion such as those for the sine or logarithm. For rational
2 transforms a power-series expansion can be derived by long division with consideration
for convergence at z = oo,
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The partial-fraction expansion method of z transform inversion can be applied to a
rational X(z) analytic at infinity. The partial-fraction expansion of X(z) can be expressed
as

X(z) = X1(2) + X3(2) + -

The inverse of X(z) can then be obtained as the sum of the inverses of each partial frac-
tion in the above expansion, that is,

x(n) = z1[X(2)] = z71[X;(2)] + 271 [Xp(2)] + - -~

The inverse of each of the simpler forms X (z) can then be found from tables or power
series and summed to give x(n).

2.5 Application of the z Transform

As described previously, the utility of the z transform is in the representation of
discrete systems and the solution of the linear difference equations which describe the
operation of a significant class of such systems. The solution of linear difference equa-
tions by z transforms is covered in detail in chapter 2 of Ref. 15. For the linear differ-
ence equation, whose general form was described previously, consider the case with
N=1,M=0,ay =1,a, =-K, and by = 1. Thus y(n) = Ky(n — 1) + x(n) with initial
condition y(-1) = 0, which is a first-order linear difference equation with zero initial
conditions and with K < 1, represents a digital feedback integrator often used in radar
signal processing [17]. Using the z transform, and the inverse transform, the unit sam-
ple response can be derived. Taking the z transform of both sides of the above equation
yields

Y(z) = Kz"1Y(2) + X(2),
and solving for Y(z) yields
ve) = —2C_ 121 > KL
I LRk

If x(n) is the unit sample, then X(z) 1, and therefore

1

¥(z) = ——
1 - Kz

Then the unit-sample response is y(n), where
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ST IO
2mj c1 - Kz

1 fz"
2mj Cz—Kdz

y(n) 2" 1 dz

Kn,

]

2.6 Discrete-Time Convolution

As mentioned earlier, the unit-sample response can be used to determine the re-
sponse of a linear shift-invariant system to any linear sequence. This is accomplished
by a concept analogous to the convolution integral of continuous systems known as the
discrete convolution. This concept can be approached from different points of view.
One approach [5] considers the response of a system with unit-sample response h(n - k),
at a point n — k sample units after a corresponding sample input of magnitude x(k) at k.
This impulse x(k) then makes a contribution y,(n) to the total output of the system at
n, where

yp(n) = x(R) h(n - k).

Considering the sample to be one element of a sequence x(n), the response of the system
will be the sum of all the contributions y,(n). Thus

n

y(n) = ) x(k)h(n - k).

h=-co

Since the impulsive response for a realizable system can be considered to be zero for
all negative arguments, the upper limit of the summation can be extended to infinity
without any effect on the summation; thus

y(n) = ). x(k)hin - k),

k==

which is the convolution sum. Hence y(n) can be described as the convolution of the
sequences x(n) and h(n), which is denoted as y(n) = x(n)+h(n). In another approach
[11] the system output y(n) is taken as the sum of the system transformations
T{...] of each of the input samples, that is,

oo

y(n) = ) x(k)T[8(n - k)],
k=-co

and since h(n) is the unit-sample response of a linear shift-invariant system, then
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oo

y(n) = ) x(k)h(n - k)
k==

as before. By substitution of variables this summation can be alternatively expressed as

o0

¥(n) = ) h(k)x(n - k) = h(n)xx(n).
k==

Thus the order of convolution is insignificant.

From the convolution sum it can be seen that the output of a linear shift-invariant
system corresponding to any linear sequence can be determined from a knowledge of the
unit-sample response of the system.

2.7 System Function

It is shown in Refs. 5, 11, and 15 that the z transform of the system output can be
expressed as the product of the 2z transforms of the input sequence and the unit-sample
response sequence:

Y(z) = X(2)H(z).

This can be shown by substituting the convolution sum for y(n) in the defining expres-
sion for Y(z), the 2z transform of y(n), and manipulating the resulting expression into

the product of z transform sum expressions for X(z) and H(z). The function H(z), the

z transform of the unit sample response, is by definition the system function. Although
it was also referred to by Barker [18] as the pulse transfer function. Thus, if the system
function is known, the output sequence will be the inverse z transform of the product
of the system function and the z transform of the input sequence.

For a system described by linear constant-coefficient difference equations, such as
given earlier in the form

N M
2 ay(n = k) = )" bx(n - 1),
k=0 r=0

the system function can be shown to be a ratio of polynomials in z=!. This can be seen
by taking the z transform of each term of the preceding equation:

N M
Z apz{y(n - k)] = Z b.z[x(n - )]
k=0 r=0

or

10
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N M
Y(2) Z akz’k = X(2) Z b.z7".
k=0

r=0
Finally,

M

b,z "
_Y(z) _r=0
H@) = 32~ &

a Z‘k
k=0

As stated earlier, the values of z that make H(z) go to zero are the zeros of H(z), and
the values of z that result in an infinite H(z) are the poles of H(z). Just as in the case
of the complex transfer function of continuous systems, the system function and thus
the behavior of a discrete system are completely specified to within a multiplicative
constant by the location of the poles and zeros in the complex z plane.

2.8 Stability and Causality

Any practical discrete system must possess two important properties. Such a sys-
tem must be stable as well as causal.

A linear discrete system is considered to be stable if to all bounded inputs there
always correspond bounded outputs [15]. From arguments in Refs. 5 and 15 it can
be shown that requiring a bounded output in response to a bounded input leads to a
condition on the unit-sample response that the sum of the magnitudes of its samples
be bounded, that is,

D Ik < oo,

k==

Using this result along with the definition of H(z), the preceding stability requirement is
equivalent to the condition that H(z) be analytic for |z| 2 1. This requires that a
stable linear shift-invariant discrete system, with system function H(z), have no poles
which lie outside the unit circle of the z plane. It is shown in Ref. 11 that if the
region of convergence of the system function H(z) contains the unit circle, the corre-
sponding discrete system is stable.

In the case of continuous systems it is not generally convenient to determine the
stability of a system by locating its poles and zeros. Likewise the same situation applies
in determining the stability of discrete systems. As in the case of continuous systems,
other methods which do not require the determination of pole and zero locations have
been developed. Such methods are described in Refs. 5 and 15. These include discrete
system variations of the Routh-Hurwitz criterion and root locus methods commonly
used for stability determination in continuous systems.

11
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A causal system is one for which the output response does not precede the applica-
tion of the input sequence. This property must apply of course to any discrete system
realizable in practice. By definition, for a linear shift-invariant system to be causal its
unit-sample response must be zero for n < 0. It is shown in Ref. 11 that this will be
the case only if the region of convergence of the system function H(z) includes z = oo,

3. RELATION BETWEEN DISCRETE AND CONTINUOUS SYSTEMS
3.1 Fourier Transforms of Continuous and Discrete Signals

From the theory of linear time-invariant continuous systems it is well known that
the Fourier transform [19] is a useful tool in the decomposition of a signal into its
frequency components. The Fourier transform, expressible as

o0

X(iw) = Flx(t)] =f x(t)e i@t gt

-o0

gives the amplitude of the signal as a continuous function of frequency. The Fourier
transform can be alternately represented as X(w) or, since w = 27f, X(f). This transform
is invertible and thus, from the continuous frequency spectrum, the function in the time
domain can be recovered as

1 F ;
x(t) = Fl[X(w)] = ﬁf X(jw)ei®t dw.
Fourier transforms can be represented as sets of transform pairs of time functions and

their corresponding Fourier transform or spectrum.

The Fourier transform of an infinite sequence of discrete samples can be represented
(6] as

X(e%) = ) x(n)eiln,

n=-w

with its inverse transform being
-4 ? 0y ,j0
= Jj0yeitn
x(n) 2 j; X(e’7)el"" db,

where 0 = wT is the angular frequency on the unit circle with respect to the sampling
frequency 1/T. This Fourier transform is a continuous function of € although x(n) is
discrete.

It can be shown [11] that the preceding transform pair, for discrete signals, aids in
sinusoidal signal analysis and is related to the 2z transform. Similar to continuous systems,

12
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the steady-state response to a sinusoidal input is sinusoidal, of the same frequency as the
input, with amplitude and phase modified as a function of the particular system charac-
teristics. Signals can be represented in terms of sinusoids or complex exponentials, thus
simplifying system analysis. With the input x(n) = eifn to a system of unit sample
response h(n), by the convolution sum the output response y(n) is

%0

y(n) = Z h(k)e'jo(k'")

k==

oo

= e )" (ke Ok,

k=<0
If
H(e?) = )" hk)eitk,
k=-c
then

y(n) = H(ejo)ejg".

H(efo ) is the frequency response of the system. It can be seen from its defining equation
to be the Fourier transform of the unit-sample response. From the equation for y(n)

the output response is of angular frequency 0, with the magnitude and phase of H(efo)
determining the output response to a complex exponential input. It can be seen that

the frequency response is the z transform of a sequence evaluated for z = e/%. Thus the
frequency response, or Fourier transform, of a sequence is its z transform evaluated on
the unit circle.

Two important extensions of the Fourier transform are the convolution theorem
and frequency convolution theorem, proofs of which appear in Ref. 20. The convolution
theorem gives a Fourier-transform pair relation between the convolution of time functions
and the product of their Fourier transforms, that is,

Flx(t)«h(t)] = X(w)H(jw).
The frequency convolution theorem is analogous and gives a Fourier-transform pair
relation between the product of time functions and the convolution of their Fourier
transforms. Simply stated, convolution in the time domain is equivalent to multiplica-

tion in the frequency domain, and multiplication in the time domain is equivalent to
convolution in the frequency domain.

3.2 Laplace and z Transform Relations

The Fourier transform for continuous functions is a generalization of the Laplace
transform, being the Laplace transform evaluated on the imaginary axis of the complex

13
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s plane. Likewise the Fourier transform for discrete signals is the z transform evaluated
on the unit circle of the complex z plane.

Consider a sequence x(n) derived from sampling with period T a continuous function
X,(t), so that x(n) = x.(nT). There is a relationship between X(z), the z transform of
x(n), and F,.(s), the Laplace transform of x.(t), which is derived in Ref. 5 as well as in
Ref. 15 and was discovered originally by Poisson. This relationship, which implies a
mapping between the s plane and z plane, is

- -snT _ _ ek
X)), s = E x.(nT)e*"" = T E Fc(s + j T n).

n=-w n=-c

This mapping from the s plane to the z plane is not one to one. The mapping between
the two planes is shown in Fig. 3.1, taken from Ref. 6. From z = ¢5! it follows that
strips of width 27/T in the s plane map onto the entire z plane [11]. The left half of
each strip in the s plane maps onto the interior of the unit circle, and the right half of
each strip maps onto the exterior of the unit circle. Each segment of the imaginary axis
in the s plane maps onto the unit circle.

3.3 Sampling of Continuous Time Signals

Most signals considered for processing originate in a continuous-time form. To
process these signals by means of the discrete systems and related algorithms discussed
here, it is necessary to represent them in the discrete-signal form of the sequences dis-
cussed earlier. These sequences are obtained by periodic sampling of the continuous-
time signal. Because of the necessarily finite speed and data-storage capabilities of
practical systems it is desired to keep the signal sample rate to a minimum.

The sampling of a continuous signal x(¢) by impulse sampling is presented in Ref. 5
as well as in Ref. 20. If §(t) is the unity impulse function of value unity at ¢ = 0 and
value zero everywhere else, then 8(t — nT) is zero everywhere but unity at ¢t = nT. Let
A(t) represent an impulse train which consists of an infinite set of unity impulses
separated in time by an interval T. Then A(t) can be represented mathematically as

A s PLANE jim z

"\

Fig. 3.1—The mapping of the s plane to the z plane implied by
sampling a continuous-time signal. (From Ref. 6 by permission.)
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Aty = ). 8(t - nT)

n=w-co

The sampling process can then be described as a modulation of A(t) by the continuous
signal x(t); therefore

x(n) = x(t)A(t).

From the definition of A(t) and the fact that the only values of x(t) of interest are those
at t = nT, x(n) is more precisely represented as

o

x(n) = ) x(nT)8(t - nT).

n=-ee

Since x(n) is formed from the product of x(t) and A(t), by the frequency convolu-
tion theorem the spectrum (Fourier transform) of x(n) is the convolution of the Fourier
transforms of x(t) and A(¢). From Ref. 20 the spectrum of x(n) is found to be the
spectrum of x(t) infinitely repeated at intervals 1/T for both positive and negative fre-
quencies. If for example the spectrum of x(t) is as indicated in Fig. 3.2a, the spectrum
of x(n) is as shown in Fig. 3.2b.

If as indicated in Fig. 3.2a, the spectrum of the continuous-time signal is band limited,
that is, zero outside the region |f| < f,, the original signal can be reconstructed from
x(n) exactly by a low-pass filter which passes, without alteration, only signal frequency
components in the interval |f| < f,. Several factors should be noted from the previous
discussion. First, if the spectrum of x(t) is not strictly limited and has frequency com-
ponents such that the periodic spectrum of x(n) overlap, there will be a distortion in the
spectrum of the recovered signal. Second, even if the frequency components are band

X (j2xt)

|
w=2mt
%, 0 f, '

(a)

x (@)271/1a)

fe>2f,
G=2mt/t =wT
fe | f
2w

(b)

Fig. 3.2—The spectrum of a continuous-time signal and the spectrum of the digital signal
resulting from sampling. (From Ref. 6 by permission.)
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limited to some |f| < f,, there will also be a distortion in the sampled signal if T does
not satisfy the inequality f, < 1/2T. This distortion, which results from a sampling rate
1/T that is not high enough (T too large) in relation to the largest frequency component
in the signal x(t), is referred to as aliasing. The term aliasing is due to the manner in
which higher frequencies masquerade as lower frequencies due to the spectrum overlap.
A simple way to envision aliasing is to consider a signal with sinusoidal components in-
cluding frequencies that exceed 1/2T, half the sampling rate. Samples of components of
frequency beyond 1/2T can upon sampling appear as samples from lower frequency
components. Thus the only way to avoid aliasing is to insure that the sampling rate is
at least the Nyquist rate, that is, twice the frequency of the highest component in the
signal.

These ideas with respect to sampling were first manifested in communication theory
in the form of the sampling theorem [21]. This theorem, proven in Refs. 5, 11, and
20 as well as 21, states that if a signal x(t) is band limited with spectrum zero for
[f1>f, and if T = 1/2f_, then x(t) can be unambiguously reconstructed from its
samples

o0

x(n) = ) x(nT)8(t - nT)

n=-e
and the recovered signal will be

= sin 2nf.(t — nT)
x(t) = ), x(nT) onf (ct ~ nT)

n=-w

3.4 Equivalence of Analog and Digital Signal Processing

The equivalence of signal processing in analog and digital realizations provides for
application of the wealth of available knowledge and techniques developed for analog
designs to digital implementations with the inherent advantages of the latter. The
equivalence between time-invariant, continuous and discrete systems was addressed by
Steiglitz [7] and Gibbs [22]. A specific isomorphism between the analog and digital
signal spaces was shown to exist. Although the natural correspondence provided by the
instantaneous sampling of continuous signals would be a match of e5! with z, this map-
ping is not one to one. An isomorphic mapping is, however, provided by the bilinear
transformation

z-landz___1+s
] 1 -5

S:

This specific isomorphism results in a matching of continuous signals with rational trans-
forms in s with discrete signals with rational transforms in z as well as a match between
time-invariant realizable continuous transforms and time-invariant realizable discrete
transforms.
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Stieglitz considered optimization problems for both continuous and discrete signals
using a least-integral-square-error criterion. His analysis applied to both deterministic
and random signals under the assumption of the isomorphism between continuous and
discrete signals and the existence of a class of continuous filters providing minimization
of some function. The resulting theorems state an equivalence to discrete filters in the
sense that a solution in the continuous case confirms the existence of a solution in the
discrete case.

4. DIGITAL NETWORKS

4.1 Digital Network Elements

With reference to the earlier discussion on system functions, linear shift-invariant
systems to be discussed here can be represented by system functions of the form

M

Z ka-k

k=0

H(z) = 5 N
i w Zakz'k
k=1

The output sequence of such systems can then be represented as

N M
yin) = =) ayy(n - k) + ) byx(n - k).
k=1 k=0

These systems can be realized by a direct application of the preceding difference -equation.
Thus the delayed inputs and outputs are obtained, multiplied by coefficients, and summed
as indicated in the equation. To carry out these operations in a block-diagram repre-
sentation or practical implementation requires the definition and use of certain arithmetic
network elements [6] as shown in Fig. 4.1. Figure 4.1a is the diagrammatic symbol for
the unit-delay operator z-1. Addition is indicated as shown in Fig. 4.1b, where the two
inputs, x;(n) and x,(n), are summed to form x,(n) + xy(n). Multiplication by a con-
stant is represented as shown in Fig. 4.1¢, where x(n) is multiplied by a to form ax(n).
The element indicated in Fig. 4.1d realizes the branching operation, with input x(n)
branching out to various points of a network as necessary. As an example of the use of
the above network elements, consider the block diagram representing the difference
equation y(n) = —a;y(n = 1) - agy(n = 2) + byx(n) + byx(n - 1), as shown in Fig. 4.2.
These network elements will normally be implemented in the binary arithmetic system.
In that case the network elements will be formed from basic binary logic gates and
flipflops.

4.2 Representation of Digital Networks by Signal Flow Graphs

A digital network can be represented by a connection of directed branches which
interconnect at nodes and are known as linear signal flow graphs. The details of the
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x (n) ———— z”! ————x(n-1)

(a) Unit Delay

%, (n) x, (n) + x, (n)
X2 (n)
(b) Adder
a
x (n) > ax(n)

(c) Constant Multiplier

x(n) = x (n)

x {n)
(d) Branch

Fig. 4.1 —Digital network elements

theory and applications of linear signal flow graphs are presented in Refs. 23, 24, and
25. The application of signal flow graphs to digital networks is discussed in Ref. 11.
The graphs can be used to represent z transform relationships and as such have been
used to provide a general representation of digital networks by matrices as described in
Ref. 26.

For this presentation it will suffice to limit discussion to the representation of digital
networks by signal flow graphs. Each branch in a digital network represents a network
element that can be replaced by a directed branch along with an indication of the trans-
mittance function between branch input and output, with the absence of such a function
indicating unity transmittance. With respect to the nodes there are source nodes repre-
senting the network inputs, sink nodes representing network outputs, summation nodes,
with multiple inputs and a single output, representing the addition of all entering
branches, and branch nodes, with a single input and multiple outputs, indicating the
branching out of the entering branch. As an example of the application of linear signal
flow graphs to digital networks, Fig. 4.3 is a representation of the digital network in
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3y (n)

- |

Fig. 4.2—Digital network realization of y(n) =-ajy(n - 1) - agy(n - 2) + bgx(n) + byx(n - 1)

x (n) - bar > > v »y(n)
2| YZ_I
-q,
b r——
&
-0,

Fig. 4.3—Digital signal flow graph of the network of Fig. 4.2

Fig. 4.2 in signal-flow-graph notation. Mason’s rule [23], a method of evaluating the
transfer function of a network from its signal flow graph, can be applied to digital
signal flow graphs in z transform notation to determine system functions.

4.3 IIR Network Structures

Many equivalent digital networks can be used to realize a particular system function.
Networks with both poles and zeros, that is IIR networks, will be discussed here. As
discussed previously, many such networks can be represented in the form of a rational
system function:
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In subsection 4.1 the realization of a digital network from its linear difference
equation was demonstrated. This method can be generalized for any integral values of
M and N. The transmittance of the branches is determined by the coefficients of the
difference equation or system function. The canonical forms of H(z) as discussed in
Ref. 27 will be presented here.

The form shown in Fig. 4.4 and referred to as direct form I is a direct realization
from the coefficients and values of M and N appearing in the system function. For ease
of representation it will be assumed for this discussion that M = N. By separating direct
form I into two networks of all poles and all zeroes and reversing their order, Oppenheim
and Schafer [11] derive the direct form II with minimum number of multiplier, adder,
and delay elements, as shown in Fig. 4.5. Kaiser [28], has recommended that direct
forms not be used in high-order systems due to the accuracy required in order to avoid
severe errors in performance.

The cascade canonic form is obtained by factoring the numerator and denominator
of H(z) and forming a product of ratios of second-order polynomials. Thus

M1+ Byt + Pgz?

H@z) = by ||

n=1

-1 -2’
IR al,-z + aziz

where m is the integer part of (N + 1)/2. If N is odd, that is, if there are an odd number
of poles and zeros, then «y; and f5; for some i will be 0. Thus the system function can

x (n) —> > > » >y (n)
7y A A yz!
b, -q;
A ] —t
z"y A A y!
bz ’02
Y . A h !

R

Y by-i A -Gy-) Y
z"v Y 2!
bx ~9

Fig. 4.4 —Direct-form-I of realization of H(z)
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x (n) > > > »y (n)
A yz! A
-0, b,
A yz-! A
-az bz
A h Y N A
|
i | I
| | |
| | 1
A N Y by- A
yz-!
~ay by
Fig. 4.5—Direct-form-II of realization of H(z)
)t(n)—~>—~—~bo PP s e e e = W= _T” gty ()
A yz! A V ! A
~ay) Bu -~ Qim Blm
- e S S o . s g »
yz-! Yz
| e Bai ~d2m Bﬁn

Fig. 4.6—The cascade-form realization of H(z)

be realized by a cascade of generalized second-order sections, as shown in Fig. 4.6. Each
second-order section is in direct form II. Networks using these sections can be equiva-
lently formed by any ordering of the poles and zeros of the sections. Although the re-
sulting networks are equivalent for infinite precision representation and arithmetic con-
siderations, the performance of practical implementations will vary due to quantization
effects that will be discussed later.

The parallel canonic form results from a partial-fraction expansion of the rational
form of H(z). If it is assumed again that M = N and m is the integer part of (N + 1)/2,
then

m -1
Yoi * Mi?
Ha) = 7q ¢ Y, oI
=11+ 0z + gz

where 7o = by/ay.
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If N is odd, some v,; and «y; will be zero. Thus H(z) can be realized by a parallel
combination of general second-order forms, as shown in Fig. 4.7. Again, each second-
order section is realized in direct form II.

4.4 FIR Network Structures

The terms FIR and IIR refer to the characteristics of the response of a digital
system rather than the realizations which would be referred to as recursive or nonrecur-
sive [29]. Recursive realizations have outputs which are a function of past outputs as
well as past and present inputs; nonrecursive realizations have outputs which are a func-
tion of past and present inputs only [30]. Both FIR as well as IIR systems can be
realized by means of either recursive or nonrecursive algorithms [31].

A nonrecursive realization of an FIR system can be implemented by means of the
direct convolution sum

N-1
y(n) = D h(k)x(n ~ k),
k=0

where h(k) = bj,, or by setting all denominator coefficients g, in the general expression
for H(z) equal to 0 [32]. The resulting direct-form realization is shown in Fig. 4.8.

& ~ Yol
A 2!
-a ]
x(n)—->—<-  / z-!
SRS | (n)
-az
[ ]
L]
L]
Tom .
A yz-!
“im Tim
yz!
~%2m

Fig. 4.7—The parallel-form realization of H(z)
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h (0)
x (n) > > »y (n)

z‘lV A
h (1)

zly A
h )

Y o A

| |

| |

| |

Y " HE) A

(N-1)

h

Fig. 4.8—Direct form of an FIR system

An alternative form is presented in Ref. 11 based on the system function which can
be written as

N-1

H(z) = Z h(n)z""

n=0

for an FIR system. The H(z) can be expressed as a product of second-order factors,

M
H(z) = ﬂ (Bor * Bipz! + Bgpz2),
k=1

where M is the largest integer in N/2 and, if N is even, B, will be O for some k. The
corresponding network is then a cascade of general second-order sections, as shown in
Fig. 4.9.

The frequency sampling technique [30], which will be discussed later in connec-
tion with the design of FIR filters, leads to a structure which is an example of an FIR
system realized by a recursive algorithm. In this case the system function can be ex-
pressed in the form

N-1 H
1 /3
Hz) = (1 -2zN) = o
N kZ=O 1 = 271 H(2r/N)k

This is a cascade of an FIR-system function 1 — 2V with zeros at /(27N described
as a comb filter, and of an IIR system. The IIR system is the parallel combination of
N single-pole filters with poles at z;, = eJ(2M/N)k and is described as a resonator. Each of
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x(n) > 5;01 ————— - >y (n)
“y ] 7y A
By Biw
L3 | z"v
ﬂgl Baw
Fig. 4.9—Cascade form of an FIR system
Ho/N
&
< TE=/N10
H,/N
x(n) —>» - - Y z!
‘j(er/N)l
- i —»y (n)
-2-N ' . |
| s |
| = / |
(RS — N
yz*!
ol (2T/N)N-1)

Fig. 4.10—Frequency-sampling realization of an FIR system

the resonator poles cancel a zero of the comb filter and its conjugate. The resonator used
to cancel the kth zero is referred to as the kth elemental filter. The outputs of the ele-
mental filters are weighted by the H;, and are summed to form the system output. The H,,
represent “‘samples” of the desired frequency response equally spaced around the unit
circle. From Ref. 33, the structure of such an FIR system is as shown in Fig. 4.10.

4.5 Transpose of a Digital Network
Mason and Zimmerman [23], in a discussion of linear flow graphs, present a con-

cept of “reversal’” of a flow graph. With reference to Mason’s formula for the trans-
mission of a multiloop graph, the reversal of the directions of all branches in a graph
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Y
i

» »y (n)

Y

x(n) >

i) Y A2

Fig. 4.11 —Transpose form of the signal flow graph of Fig. 4.3

along with interchange of network input and output results in a new graph of identical
transmission. Alternate proofs are presented in Refs. 25 and 34. As applied to digital
networks, a transpose network of identical system function can be obtained from a
known network by reversing the direction of all branches and interchanging input and
output, with all branch transmittances remaining fixed.

Thus, for each of the digital network structures presented here, a transpose structure
can be obtained. As an example, the signal flow graph in Fig. 4.11 represents the
transpose of the flow graph of Fig. 4.3. Some networks are their own transpose. Al-
though a digital network and its transpose would have identical system functions for
infinite precision, in practical implementations one form will generally be more desirable
due to errors caused by finite quantization effects [34].

4.6 Other Canonic Realizations of Digital Networks

As mentioned many realizations for an arbitrary digital system function are possible,
but each has different characteristics with respect to quantization effects. It is therefore
desirable to have a number of realizations of a given system function available in order
to choose the one with the best performance.

In addition to the basic structures presented previously, a number of additional
network forms have been developed recently. These developments have been based on a
method presented by Mitra and Sherwood [35]. Their method uses continued-fraction
expansion of a digital transfer function expressed as a real rational function in z in the
form
2N+ an-lzn-l " RRY ¥ + ag

a

G(z) =

bnzn + bn_lz"'l - B B 'blz + bo

Different expansions of G(z) result in four canonic realization forms, each resembling a
ladder. The realizability of each form depends on the existence of the associated
continued-fraction expansion, which can be readily determined.

As an example of one form of such a realization development consider G(z) for non-
zeroa,, b,, qnd b such that G(z) has the resulting continued fraction expansion
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G(z) = Ag + -

BIZ +

To implement this function, subnetworks of the form

1
Gr(e)ie Bz + T(z)
and
1
@6 = TR

are required with A and B real. The realizations of these subnetworks are shown in Fig.
4.12 for G,(z) and Fig. 4.13 for G,(z). To apply these subnetworks, G(z) is written as

1
G = Ay + —m————,
(2) 0 B,z + T, (2)
where
1
Tl(z) =
Ay + 1
BzZ + 1
Ay + 1
1
155 9 < A_—

n

The second term of G(z) is in the form of G,(z) and can be realized as shown in Fig.
4.12. T,(z) is next written in the form of G,(z) and realized accordingly. The process
is continued until all terms of the expansion are exhausted. A realization of the form
of Fig. 4.14 results.
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